Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Exp Med ; 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: covidwho-2302770

RESUMEN

In a convenience sample of 93 patients treated with monoclonal antibodies (moAbs) against SARS-CoV-2, the interleukin-62/lymphocyte count ratio (IL-62/LC) was able to predict clinical worsening both in early stages of COVID-19 and in oxygen-requiring patients. Moreover, we analysed 18 most at-risk patients with asymptomatic or mild disease treated with both moAbs and antiviral treatment and found that only 2 had clinical progression, while patients with a similar risk were reported to have an unfavourable outcome in most cases from recent data. In only one of our 18 patients, clinical progression was attributable to COVID-19, and in the other cases, clinical progression was observed despite IL-62/LC being above the risk cut-off. In conclusion, IL-62/LC may be a valuable method to identify patients requiring more aggressive treatments both in earlier and later stages of the disease; however, most at-risk patients can be protected from clinical worsening by combining moAbs and antivirals, even if levels of the IL-62/LC biomarker are lower than the risk cut-off.

2.
PLoS One ; 18(2): e0281444, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2230252

RESUMEN

BACKGROUND: Despite an apparent effective vaccination, some patients are admitted to the hospital after SARS-CoV-2 infection. The role of adaptive immunity in COVID-19 is growing; nonetheless, differences in the spike-specific immune responses between patients requiring or not hospitalization for SARS-CoV-2 infection remains to be evaluated. In this study, we aim to evaluate the spike-specific immune response in patients with mild-moderate or severeSARS-CoV-2 infection, after breakthrough infection following two doses of BNT162b2 mRNA vaccine. METHODS: We included three cohorts of 15 cases which received the two BNT162b2 vaccine doses in previous 4 to 7 months: 1) patients with severe COVID-19; 2) patients with mild-moderate COVID-19 and 3) vaccinated individuals with a negative SARS-CoV-2 molecular pharyngeal swab (healthy subjects). Anti-S1 and anti-S2 specific SARS-CoV-2 IgM and IgG titers were measured through a chemiluminescence immunoassay technology. In addition, the frequencies of IFNγ-releasing cells were measured by ELISpot. RESULTS: The spike-specific IFNγ-releasing cells were significantly lower in severe patients (8 [0; 26] s.f.c.×106), as compared to mild-moderate patients (135 [64; 159] s.f.c.×106; p<0.001) and healthy subjects (103 [50; 188] s.f.c.×106; p<0.001). The anti-Spike protein IgG levels were similar among the three cohorts of cases (p = 0.098). All cases had an IgM titer below the analytic sensitivity of the test. The Receiver Operating Curve analysis indicated the rate of spike-specific IFNγ-releasing cells can discriminate correctly severe COVID-19 and mild-moderate patients (AUC: 0.9289; 95%CI: 0.8376-1.000; p< 0.0001), with a diagnostic specificity of 100% for s.f.c. > 81.2 x 106. CONCLUSIONS: 2-doses vaccinated patients requiring hospitalization for severe COVID-19 show a cellular-mediated immune response lower than mild-moderate or healthy subjects, despite similar antibody titers.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacuna BNT162 , Interferón gamma , Anticuerpos Antivirales , Inmunoglobulina M , Inmunoglobulina G , Vacunación
3.
Viruses ; 15(2)2023 01 31.
Artículo en Inglés | MEDLINE | ID: covidwho-2225682

RESUMEN

We investigated the evolution of SARS-CoV-2 spread in Calabria, Southern Italy, in 2022. A total of 272 RNA isolates from nasopharyngeal swabs of individuals infected with SARS-CoV-2 were sequenced by whole genome sequencing (N = 172) and/or Sanger sequencing (N = 100). Analysis of diffusion of Omicron variants in Calabria revealed the prevalence of 10 different sub-lineages (recombinant BA.1/BA.2, BA.1, BA.1.1, BA.2, BA.2.9, BA.2.10, BA.2.12.1, BA.4, BA.5, BE.1). We observed that Omicron spread in Calabria presented a similar trend as in Italy, with some notable exceptions: BA.1 disappeared in April in Calabria but not in the rest of Italy; recombinant BA.1/BA.2 showed higher frequency in Calabria (13%) than in the rest of Italy (0.02%); BA.2.9, BA.4 and BA.5 emerged in Calabria later than in other Italian regions. In addition, Calabria Omicron presented 16 non-canonical mutations in the S protein and 151 non-canonical mutations in non-structural proteins. Most non-canonical mutations in the S protein occurred mainly in BA.5 whereas non-canonical mutations in non-structural or accessory proteins (ORF1ab, ORF3a, ORF8 and N) were identified in BA.2 and BA.5 sub-lineages. In conclusion, the data reported here underscore the importance of monitoring the entire SARS-CoV-2 genome.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Evolución Molecular , Genoma Viral , SARS-CoV-2/genética , Italia/epidemiología
4.
Frontiers in microbiology ; 13, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1989478

RESUMEN

In this study, we report on the results of SARS-CoV-2 surveillance performed in an area of Southern Italy for 12 months (from March 2021 to February 2022). To this study, we have sequenced RNA from 609 isolates. We have identified circulating VOCs by Sanger sequencing of the S gene and defined their genotypes by whole-genome NGS sequencing of 157 representative isolates. Our results indicated that B.1 and Alpha were the only circulating lineages in Calabria in March 2021;while Alpha remained the most common variant between April 2021 and May 2021 (90 and 73%, respectively), we observed a concomitant decrease in B.1 cases and appearance of Gamma cases (6 and 21%, respectively);C.36.3 and Delta appeared in June 2021 (6 and 3%, respectively);Delta became dominant in July 2021 while Alpha continued to reduce (46 and 48%, respectively). In August 2021, Delta became the only circulating variant until the end of December 2021. As of January 2022, Omicron emerged and took over Delta (72 and 28%, respectively). No patient carrying Beta, Iota, Mu, or Eta variants was identified in this survey. Among the genomes identified in this study, some were distributed all over Europe (B1_S477N, Alpha_L5F, Delta_T95, Delta_G181V, and Delta_A222V), some were distributed in the majority of Italian regions (B1_S477N, B1_Q675H, Delta_T95I and Delta_A222V), and some were present mainly in Calabria (B1_S477N_T29I, B1_S477N_T29I_E484Q, Alpha_A67S, Alpha_A701S, and Alpha_T724I). Prediction analysis of the effects of mutations on the immune response (i.e., binding to class I MHC and/or recognition of T cells) indicated that T29I in B.1 variant;A701S in Alpha variant;and T19R in Delta variant were predicted to impair binding to class I MHC whereas the mutations A67S identified in Alpha;E484K identified in Gamma;and E156G and ΔF157/R158 identified in Delta were predicted to impair recognition by T cells. In conclusion, we report on the results of SARS-CoV-2 surveillance in Regione Calabria in the period between March 2021 and February 2022, identified variants that were enriched mainly in Calabria, and predicted the effects of identified mutations on host immune response.

5.
Infect Genet Evol ; 99: 105253, 2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1693108

RESUMEN

BACKGROUND: Nursing homes have represented important hotspots of viral spread during the initial wave of COVID-19 pandemics. The proximity of patients inside nursing homes allows investigate the dynamics of viral transmission, which may help understand SARS-Cov2 biology and spread. METHODS: SARS-CoV-2 viral genomes obtained from 46 patients infected in an outbreak inside a nursing home in Calabria region (South Italy) were analyzed by Next Generation Sequencing. We also investigated the evolution of viral genomes in 8 patients for which multiple swabs were available. Phylogenetic analysis and haplotype reconstruction were carried out with IQ-TREE software and RegressHaplo tool, respectively. RESULTS: All viral strains isolated from patients infected in the nursing home were classified as B.1 lineage, clade G. Overall, 14 major single nucleotide variations (SNVs) (frequency > 80%) and 12 minor SNVs (frequency comprised between 20% and 80%) were identified with reference to the Wuhan-H-1 sequence (NC_045512.2). All patients presented the same 6 major SNVs: D614G in the S gene; P4715L, ntC3037T (F924F) and S5398P in Orf1ab gene; ntC26681T (F53F) in the M gene; and ntC241T in the non-coding UTR region. However, haplotype reconstruction identified a founder haplotype (Hap A) in 36 patients carrying only the 6 common SNVs indicated above, and 10 other haplotypes (Hap BK) derived from Hap A in the remaining 10 patients. Notably, no significant association between a specific viral haplotype and clinical parameters was found. CONCLUSION: The predominant viral strain responsible for the infection in a nursing home in Calabria was the B.1 lineage (clade G). Viral genomes were classified into 11 haplotypes (Hap A in 36 patients, Hap BK in the remaining patients).


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Genoma Viral , Humanos , Casas de Salud , Filogenia , ARN Viral/genética , SARS-CoV-2/genética
6.
J Transl Med ; 19(1): 79, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1088601

RESUMEN

BACKGROUND: The Sars-CoV-2 can cause severe pneumonia with multiorgan disease; thus, the identification of clinical and laboratory predictors of the progression towards severe and fatal forms of this illness is needed. Here, we retrospectively evaluated and integrated laboratory parameters of 45 elderly subjects from a long-term care facility with Sars-CoV-2 outbreak and spread, to identify potential common patterns of systemic response able to better stratify patients' clinical course and outcome. METHODS: Baseline white blood cells, granulocytes', lymphocytes', and platelets' counts, hemoglobin, total iron, ferritin, D-dimer, and interleukin-6 concentration were used to generate a principal component analysis. Statistical analysis was performed by using R statistical package version 4.0. RESULTS: We identified 3 laboratory patterns of response, renamed as low-risk, intermediate-risk, and high-risk, strongly associated with patients' survival (p < 0.01). D-dimer, iron status, lymphocyte/monocyte count represented the main markers discriminating high- and low-risk groups. Patients belonging to the high-risk group presented a significantly longer time to ferritin decrease (p: 0.047). Iron-to-ferritin-ratio (IFR) significantly segregated recovered and dead patients in the intermediate-risk group (p: 0.012). CONCLUSIONS: Our data suggest that a combination of few laboratory parameters, i.e. iron status, D-dimer and lymphocyte/monocyte count at admission and during the hospital stay, can predict clinical progression in COVID-19.


Asunto(s)
COVID-19/diagnóstico , COVID-19/terapia , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Hierro/sangre , Linfocitos/patología , Monocitos/patología , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , COVID-19/sangre , COVID-19/mortalidad , Femenino , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Humanos , Recuento de Leucocitos , Cuidados a Largo Plazo , Masculino , Persona de Mediana Edad , Recuento de Plaquetas , Pronóstico , Estudios Retrospectivos , SARS-CoV-2/fisiología , Resultado del Tratamiento
7.
Front Oncol ; 10: 599502, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-1045512

RESUMEN

Since SARS-CoV-2 outbreak in December 2019, world health-system has been severely impacted with increased hospitalization, Intensive-Care-Unit (ICU) access and high mortality rates, mostly due to severe acute respiratory failure and multi-organ failure. Excessive and uncontrolled release of proinflammatory cytokines (cytokine release/storm syndrome, CRS) have been linked to the development of these events. The recent advancements of immunotherapy for the treatment of hematologic and solid tumors shed light on many of the molecular mechanisms underlying this phenomenon, thus rendering desirable a multidisciplinary approach to improve COVID-19 patients' outcome. Indeed, currently available therapeutic-strategies to overcome CRS, should be urgently evaluated for their capability of reducing COVID-19 mortality. Notably, COVID-19 shares different pathogenic aspects with acute graft-versus-host-disease (aGVHD), hemophagocytic-lymphohistiocytosis (HLH), myelofibrosis, and CAR-T-associated CRS. Specifically, similarly to aGVHD, an induced tissue damage (caused by the virus) leads to increased cytokine release (TNFα and IL-6) which in turn leads to exaggerated dendritic cells, macrophages (like in HLH) and lymphocytes (as in CAR-T) activation, immune-cells migration, and tissue-damage (including late-stage fibrosis, similar to myelofibrosis). Janus Kinase (JAK) signaling represents a molecular hub linking all these events, rendering JAK-inhibitors suitable to limit deleterious effects of an overwhelming inflammatory-response. Accordingly, ruxolitinib is the only selective JAK1 and JAK2-inhibitor approved for the treatment of myelofibrosis and aGVHD. Here, we discuss, from a molecular and hematological point of view, the rationale for targeting JAK signaling in the management of COVID-19 patients and report the clinical results of a patient admitted to ICU among the firsts to be treated with ruxolitinib in Italy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA